Terminale ES – Exercices de calculs de dérivées avec des exponentielles.

Partie A: fonctions où apparaît seulement l'expression e^x .

Exercice 1: Soient f et g les fonctions définies sur \mathbb{R} par $f(x)=e^x+x^2$ et $g(x)=(x-2)e^x$

 $f'(x) = e^x + 2x \quad \forall x \in \mathbb{R}.$

g(x) est de la forme $u(x) \times v(x)$ avec u(x) = x - 2, u'(x) = 1, et $v(x) = v'(x) = e^x$. Donc $g'(x) = u'(x)v(x) + u(x)v'(x) = 1 \times e^x + (x - 2) \times e^x = (1 + x - 2)e^x$ $g'(x) = (x - 1)e^x$ $\forall x \in \mathbb{R}$.

Exercice 2: Soient f et g les fonctions définies sur \mathbb{R} par $f(x)=3x^2-2e^x$ et $g(x)=(4-x^2)e^x$.

 $f'(x) = 3 \times 2 x - 2 \times e^x \qquad f'(x) = 6x - 2e^x \qquad \forall x \in \mathbb{R}.$

 $\begin{array}{lll} g(x) \ \ \text{est de la forme} \ \ u(x) \times v(x) \ \ \text{avec} \ \ u(x) = 4 - x^2 \ , \ \ u'(x) = -2 \ x \ \ \text{et} \ \ v(x) = v'(x) = e^x \ . \\ \text{Donc} \ \ g'(x) = u'(x)v(x) + u(x)v'(x) = -2 x e^x + (4 - x^2)e^x & g'(x) = (-x^2 - 2 x + 4)e^x \ \end{array}$

Exercice 3: Soient f et g les fonctions définies sur \mathbb{R} par $f(x) = (x^2 + 3x + 1)e^x$ et $g(x) = x^3e^x$.

 $f(x) \text{ est de la forme } u(x) \times v(x) \text{ avec } u(x) = x^2 + 3x + 1, \ u'(x) = 2x + 3 \text{ et } v(x) = v'(x) = e^x.$ $\text{Donc } f'(x) = u'(x)v(x) + u(x)v'(x) = (2x + 3)e^x + (x^2 + 3x + 1)e^x = (2x + 3 + x^2 + 3x + 1)e^x.$ $\text{Donc } f'(x) = (x^2 + 5x + 4)e^x \quad \forall x \in \mathbb{R}.$

g(x) est de la forme $u(x) \times v(x)$ avec $u(x) = x^3$, $u'(x) = 3x^2$ et $v(x) = v'(x) = e^x$. Donc $g'(x) = u'(x)v(x) + u(x)v'(x) = 3x^2e^x + x^3e^x$ $g'(x) = (x^3 + 3x^2)e^x$ $\forall x \in \mathbb{R}$.

Exercice 4:1) f est la fonction définie sur $]0;+\infty[$ par $]f(x)=\frac{e^x}{x}$. (Remarque: valeur interdite:0)

f(x) est de la forme $\frac{u(x)}{v(x)}$ avec $u(x)=u'(x)=e^x$, v(x)=x et v'(x)=1.

Donc $f'(x) = \frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2} = \frac{e^x \times x - e^x \times 1}{x^2}$ $f'(x) = \frac{(x-1)e^x}{x^2} \quad \forall x \in]0; +\infty[$.

2) g est la fonction définie sur \mathbb{R} par $g(x) = \frac{x}{e^x}$. (Remarque : pas de valeur interdite car $\forall x \in \mathbb{R}, e^x > 0$)

g(x) est de la forme $\frac{u(x)}{v(x)}$ avec u(x)=x, u'(x)=1, et $v(x)=v'(x)=e^x$.

Donc $g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} = \frac{1 \times e^x - x \times e^x}{(e^x)^2} = \frac{(1-x)e^x}{e^x \times e^x}$ $g'(x) = \frac{1-x}{e^x}$ $\forall x \in \mathbb{R}.$

Exercice 5:1) f est la fonction définie sur $]-2;+\infty[$ par $f(x)=\frac{e^x}{x+2}]$. (Remarque: valeur interdite: -2)

f(x) est de la forme $\frac{u(x)}{v(x)}$ avec $u(x)=u'(x)=e^x$, v(x)=x+2 et v'(x)=1.

Donc $f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} = \frac{e^x \times (x+2) - e^x \times 1}{(x+2)^2} = \frac{(x+2-1)e^x}{(x+2)^2}$

$$f'(x) = \frac{(x+1)e^x}{(x+2)^2} \quad \forall x \in]-2; +\infty[.$$

2) g est la fonction définie sur \mathbb{R} par $g(x) = \frac{x+2}{e^x}$.

g(x) est de la forme $\frac{u(x)}{v(x)}$ avec u(x)=x+2, u'(x)=1 et $v(x)=v'(x)=e^x$.

Donc
$$g'(x) = \frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2} = \frac{1 \times e^x - (x+2)e^x}{(e^x)^2} = \frac{(1-(x+2))e^x}{e^x \times e^x} \quad g'(x) = \frac{(-x-1)}{e^x} \quad \forall x \in \mathbb{R}.$$

Exercice 6: f et g sont les fonctions définies sur \mathbb{R} par $f(x) = \frac{e^x + 1}{e^x}$ et $g(x) = \frac{e^x}{e^x + 1}$.

f(x) est de la forme $\frac{u(x)}{v(x)}$ avec $u(x)=e^x+1$, $u'(x)=e^x$ et $v(x)=v'(x)=e^x$.

Donc
$$f'(x) = \frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2} = \frac{e^x \times e^x - (e^x + 1) \times e^x}{(e^x)^2} = \frac{(e^x - (e^x + 1))e^x}{e^x \times e^x} = \frac{-1 \times e^x}{e^x \times e^x}$$

Donc
$$f'(x) = -\frac{1}{e^x}$$
 ou $f'(x) = -e^{-x}$ $\forall x \in \mathbb{R}$.

g(x) est de la forme $\frac{u(x)}{v(x)}$ avec $u(x)=u'(x)=e^x$, $v(x)=e^x+1$ et $v'(x)=e^x$.

Donc
$$g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} = \frac{e^x \times (e^x + 1) - e^x \times e^x}{(e^x + 1)^2} = \frac{(e^x + 1 - e^x)e^x}{(e^x + 1)^2}$$

$$g'(x) = \frac{e^x}{(e^x + 1)^2} \mid \forall x \in \mathbb{R}.$$

Partie B : fonctions où apparaît une expression de la forme $e^{u(x)}$.

Dans les exercice 7 à 12, on factorisera au maximum les expressions obtenues.

Exercice 7: f et g les fonctions définies sur \mathbb{R} par $|f(x)| = e^{3x} + 2$ et $|g(x)| = 10e^{-0.5x}$

f(x) est de la forme $e^{u(x)}+2$ avec u(x)=3x et u'(x)=3.

Donc
$$f'(x)=u'(x)\times e^{u(x)}+0$$
 soit $f'(x)=3e^{3x}$ $\forall x\in\mathbb{R}$.

g(x) est de la forme $10e^{u(x)}$ avec u(x) = -0.5x et u'(x) = -0.5. Donc $g'(x) = 10u'(x) \times e^{u(x)} = 10 \times (-0.5) \times e^{-0.5x}$ donc $g'(x) = -5e^{-0.5x}$ $\forall x \in \mathbb{R}$.

Donc
$$g'(x)=10u'(x)\times e^{u(x)}=10\times (-0.5)\times e^{-0.5x}$$
 donc $g'(x)=-5e^{-0.5x}$ $\forall x \in \mathbb{R}$.

Exercice 8: Soient f et g les fonctions définies sur \mathbb{R} par $f(x)=xe^{-x}$ et $g(x)=e^{-x^2+x}$

$$f(x)$$
 est de la forme $u(x) \times v(x)$ avec $u(x) = x$, $u'(x) = 1$, et $v(x) = e^{-x}$ donc $v'(x) = -e^{-x}$

Si trouver v'(x) n'est pas immédiat pour vous, j'explique ici :

$$v(x)$$
 est de la forme $e^{U(x)}$ avec $U(x) = -x$ et $U'(x) = -1$. Donc $v'(x) = U'(x) \times e^{U(x)} = -1 \times e^{-x} = -e^{-x}$.

Donc
$$f'(x) = u'(x)v(x) + u(x)v'(x) = 1 \times e^{-x} + x \times (-e^{-x})$$
, soit $f'(x) = (1-x)e^{-x} \ \forall \ x \in \mathbb{R}$.

```
g(x) est de la forme e^{u(x)} avec u(x) = -x^2 + x donc u'(x) = -2x + 1
Donc g'(x)=u'(x)e^{u(x)} soit g'(x)=(-2x+1)e^{-x^2+x}
Exercise 9: Soient f et g les fonctions définies sur \mathbb{R} par f(x)=(2x-3)e^{-0.1x} et g(x)=(5-0.1x)e^{2x}.
 f(x) est de la forme u(x) \times v(x) avec u(x) = 2x - 3, u'(x) = 2, v(x) = e^{-0.1x} donc v'(x) = -0.1e^{-0.1x}.
(Même explication que pour le v'(x) du f de l'exercice 8)
Donc f'(x)=u'(x)v(x)+u(x)v'(x)=2e^{-0.1x}+(2x-3)\times(-0.1e^{-0.1x})=(2-0.2x+0.3)e^{-0.1x}

Donc f'(x)=(-0.2x+2.3)e^{-0.1x} \forall x \in \mathbb{R}.
g(x) est de la forme u(x) \times v(x) avec u(x) = 5 - 0.1x, u'(x) = -0.1, v(x) = e^{2x} et v'(x) = 2e^{2x}. Donc g'(x) = u'(x)v(x) + u(x)v'(x) = -0.1e^{2x} + (5 - 0.1x) \times (2e^{2x}) = (-0.1 + 10 - 0.2x)e^{2x}
Donc g'(x) = (-0.2x + 9.9)e^{2x} \forall x \in \mathbb{R}.
Exercice 10: Soient f et g les fonctions définies sur \mathbb{R} par f(x)=4xe^{-x+1} et g(x)=3e^{1-x^2}.
f(x) est de la forme u(x)\times v(x) avec u(x)=4x, u'(x)=4, v(x)=e^{-x+1} et v'(x)=-e^{-x+1}.
Donc f'(x)=u'(x)v(x)+u(x)v'(x)=4e^{-x+1}+4x\times(-e^{-x+1}) donc f'(x)=(4-4x)e^{-x+1} \forall x \in \mathbb{R}.
ou encore f'(x)=4(1-x)e^{-x+1} \forall x \in \mathbb{R}. Ou encore f'(x)=-4(x-1)e^{-x+1} \forall x \in \mathbb{R}.
g(x) est de la forme 3e^{u(x)} avec u(x)=1-x^2 et u'(x)=-2x
Donc g'(x) = 3 \times u'(x) \times e^{u(x)} = 3 \times (-2x) e^{1-x^2} donc g'(x) = -6x e^{1-x^2} \forall x \in \mathbb{R}.
Exercice 11: Soient f et g les fonctions définies sur \mathbb{R} par f(x) = (x^2 + 1)e^{-x} et g(x) = e^{\frac{1-x}{2}}
 f(x) est de la forme u(x) \times v(x) avec u(x) = x^2 + 1, u'(x) = 2x, v(x) = e^{-x} et v'(x) = -e^{-x}.
Donc f'(x) = u'(x)v(x) + u(x)v'(x) = 2xe^{-x} + (x^2 + 1) \times (-e^{-x}) = (2x - x^2 - 1)e^{-x}
Soit f'(x) = (-x^2 + 2x - 1)e^{-x} \ \forall x \in \mathbb{R}.
g(x) est de la forme e^{u(x)} avec u(x) = \frac{1-x}{2} = \frac{1}{2} - \frac{1}{2}x donc u'(x) = -\frac{1}{2}.
Donc g'(x)=u'(x)e^{u(x)}=-\frac{1}{2}e^{\frac{1-x}{2}} soit g'(x)=-\frac{e^{\frac{1-x}{2}}}{2} ou g'(x)=-\frac{1}{2}e^{\frac{1-x}{2}} \forall x \in \mathbb{R}.
Exercice 12: 1) f est la fonction définie sur ]1;+\infty[ par |f(x)=\exp(\frac{x-3}{x-1})|
Soit x \in ]1; +\infty[. f(x) est de la forme e^{U(x)} avec U(x) = \frac{x-3}{x-1}.
```

Exercices de calculs de dérivées avec des exponentielles – Corrigés – 3/7

$$\begin{array}{l} {\rm U}(x) \ \ {\rm est} \ {\rm de} \ {\rm la} \ {\rm forme} \ \frac{u(x)}{v(x)} \ \ {\rm avec} \ \overline{u(x) = x - 3} \ , \ \overline{u'(x) = 1} \ , \ \overline{v(x) = x - 1} \ \ {\rm et} \ \overline{v'(x) = 1} \ . \\ {\rm Donc} \ \ {\rm U}'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{(v(x))^2} = \frac{1 \times (x - 1) - 1 \times (x - 3)}{(x - 1)^2} = \frac{x - 1 - x + 2}{(x - 1)^3} \ \ {\rm soit} \ \overline{ \begin{array}{l} {\rm U}'(x) = \frac{2}{(x - 1)^2} \\ \end{array} } \ . \\ {\rm Donc} \ \ f'(x) = \frac{2}{(x - 1)^2} \times {\rm e}^{\frac{x - 3}{x - 1}} \ \ {\rm soit} \ \ \overline{ \begin{array}{l} f'(x) = \frac{2}{(x - 1)^2} \\ \end{array} } \ \forall \quad x \in \]1; + \infty[\ . \end{array}$$

2) g est la fonction définie sur \mathbb{R} par $g(x) = \frac{1}{2\pi} e^{\frac{-x^2}{2}}$.

Remarque: $\frac{1}{2\pi}$ est une constante. Dans le calcul de la dérivée, on la traite comme on ferait avec 3 ou 10.

$$g(x)$$
 est de la forme $\frac{1}{2\pi}e^{u(x)}$ avec $u(x) = -\frac{x^2}{2} = -\frac{1}{2}x^2$ et $u'(x) = -\frac{1}{2} \times 2x = -x$.

Donc
$$g'(x) = \frac{1}{2\pi} \times u'(x) \times e^{u(x)} = \frac{1}{2\pi} \times (-x) \times e^{-\frac{x^2}{2}}$$
 soit $g'(x) = -\frac{x}{2\pi} e^{-\frac{x^2}{2}}$ $\forall x \in \mathbb{R}$.

Partie C : calculs de dérivées avec études de variations.

Exercice 13: f est la fonction définie sur \mathbb{R} par $f(x)=5e^{-2x}$. f(x) est de la forme $5e^{u(x)}$ avec u(x)=-2x donc u'(x)=-2. Donc $f'(x)=5u'(x)e^{u(x)}=5\times(-2)\times e^{-2x}$ soit $f'(x)=-10e^{-2x}$

Comme pour tout $X \in \mathbb{R}$, $e^X > 0$, pour tout $x \in \mathbb{R}$, $e^{-2x} > 0$ donc pour tout $x \in \mathbb{R}$, $-10e^{-2x} < 0$. Pour tout $x \in \mathbb{R}$, on a donc f'(x) < 0. f est donc strictement décroissante sur \mathbb{R} .

On peut aussi le présenter dans un tableau de signes :

X	$-\infty$ $+\infty$
-10	_
e^{-2x}	+
f '(x)	_
variations $de f$	•

Exercice 14: f est la fonction définie sur \mathbb{R} par $f(x) = 100 e^{-0.5x+1.5}$. f(x) est de la forme $100 e^{u(x)}$ avec u(x) = -0.5x+1.5 donc u'(x) = -0.5. Donc $f'(x) = 100 \times u'(x) \times e^{u(x)} = 100 \times (-0.5) \times e^{-0.5x+1.5}$ soit $f'(x) = -50 e^{-0.5x+1.5}$

x	$-\infty$
-50	_
$e^{-0.5 x+1.5}$	+
f'(x)	_
variations de f	

Exercice 15: f est la fonction définie sur \mathbb{R} par $f(x) = (e-1)e^{2x+1}$

Remarque : e-1 est une constante strictement positive puisque $e \approx 2,718$.

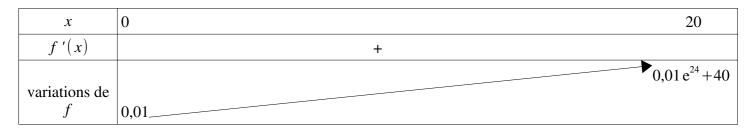
$$f(x)$$
 est de la forme $(e-1)e^{u(x)}$ avec $u(x)=2x+1$ donc $u'(x)=2$.
Donc $f'(x)=(e-1)\times u'(x)\times e^{u(x)}=(e-1)\times 2\times e^{2x+1}$ $f'(x)=2(e-1)e^{2x+1}$.

X	$-\infty$ + ∞
2	+
e-1	+
e^{2x+1}	+
f'(x)	+
variations de f	

f est strictement croissante sur \mathbb{R} .

Exercice 16:
$$f(x)=0.01e^{1.2x}+2x$$
 sur [0;20].
 $f(x)$ est de la forme: $0.01e^{u(x)}+2x$ avec $u(x)=1.2x$ donc $u'(x)=1.2$.
Donc $f'(x)=0.01\times u'(x)\times e^{u(x)}+2=0.01\times 1.2e^{1.2x}+2$ $f'(x)=0.012e^{1.2x}+2$

On sait que pour tout réel X, $e^X > 0$. Donc pour tout $x \in \mathbb{R}$, $e^{1,2x} > 0$, donc $0,012e^{1,2x} > 0$ donc $0,012e^{1,2x} + 2 > 2$ donc f'(x) > 0.



f est strictement croissante sur [0;20] $f(0)=0.01e^{1.2\times0}+2\times0=0.01$ et $f(20)=0.01e^{24}+40$

Exercice 17:
$$f(x) = (4-x)e^{\frac{x}{2}}$$
 sur [0;4]

$$f(x) \text{ est de la forme } u(x) \times v(x) \text{ avec } \boxed{u(x) = 4 - x}, \boxed{u'(x) = -1}, \boxed{v(x) = e^{\frac{x}{2}}} \text{ et } \boxed{v'(x) = \frac{1}{2}e^{\frac{x}{2}}}$$

$$Donc \ f'(x) = u'(x)v(x) + u(x)v'(x) = -1 \times e^{\frac{x}{2}} + (4 - x) \times \frac{1}{2}e^{\frac{x}{2}} = \left(-1 + \frac{4 - x}{2}\right)e^{\frac{x}{2}} = \left(-\frac{2}{2} + \frac{4 - x}{2}\right)e^{\frac{x}{2}}$$

$$f'(x) = \frac{-2 + 4 - x}{2}e^{\frac{x}{2}}. \qquad \boxed{f'(x) = \frac{2 - x}{2}e^{\frac{x}{2}}}$$

$$f(0) = (4-0)e^{\frac{0}{2}} = 4e^{0} = 4$$
 $f(2) = (4-2)e^{\frac{2}{2}} = 2e^{1} = 2e$ $f(4) = (4-4)e^{\frac{4}{2}} = 0e^{2} = 0$

X	0	2		4
2-x=-x+2	+	0	_	
2	+		+	
$e^{\frac{x}{2}}$	+		+	
f'(x)	+	0	_	
variations de f	4	→ 2e		• 0

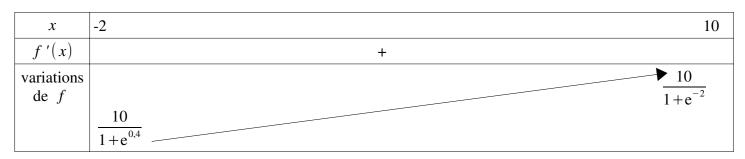
Exercice 18:
$$f(x) = \frac{10}{1 + e^{-0.2x}}$$
 sur $[-2; 10]$.

Remarque : il n'y a pas de valeur interdite car pour tout réel x, $e^{-0.2x} > 0$ donc $1 + e^{-0.2x} > 1$ donc $1 + e^{-0.2x} \neq 0$ f(x) est de la forme $10 \times \frac{1}{v(x)}$ avec $v(x) = 1 + e^{-0.2x}$ et $v'(x) = -0.2e^{-0.2x}$.

Donc
$$f'(x) = 10 \times \frac{-v'(x)}{(v(x))^2} = \frac{-10 \times (-0.2 e^{-0.2x})}{(1 + e^{-0.2x})^2} \left[f'(x) = \frac{2 e^{-0.2x}}{(1 + e^{-0.2x})^2} \right]$$

Le numérateur est toujours strictement positif car 2 et $e^{-0.2x}$ le sont.

Le dénominateur est le carré d'un nombre qui est toujours strictement positif, don c'est lui-même un nombre strictement positif.



$$f(-2) = \frac{10}{1 + e^{-0.2 \times (-2)}} = \frac{10}{1 + e^{0.4}} \qquad f(10) = \frac{10}{1 + e^{-0.2 \times 10}} = \frac{10}{1 + e^{-2}} \quad (= \frac{10}{1 + \frac{1}{e^2}} = \frac{10}{\frac{e^2}{e^2} + \frac{1}{e^2}} = \frac{10e^2}{e^2 + 1})$$

Exercice 19:
$$f(x) = \frac{25}{5 + 2e^{-0.5x}}$$
 sur [0;15].

Remarque: le dénominateur ne s'annule jamais car il est égal à 5+un produit de nombres strictement positif.

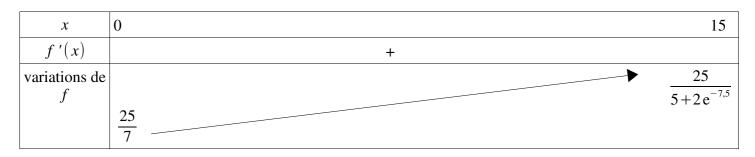
$$f(x) \text{ est de la forme } 25 \times \frac{1}{v(x)} \text{ avec } \boxed{v(x) = 5 + 2e^{-0.5x}} \text{ et } \boxed{v'(x) = 2 \times (-0.5) \times e^{-0.5x} = -e^{-0.5x}}.$$

$$\text{Donc } f'(x) = 25 \times \frac{-v'(x)}{(v(x))^2} = 25 \times \frac{-(-e^{-0.5x})}{(5 + e^{-0.5x})^2} \boxed{f'(x) = \frac{25e^{-0.5x}}{(5 + e^{-0.5x})^2}}$$

Le numérateur de f'(x) est toujours strictement positif car 25 et $e^{-0.5x}$ le sont.

Le dénominateur est le carré d'un nombre toujours strictement positif, donc il est lui-même strictement positif. Donc pour tout x de \mathbb{R} et a fortiori de [0;15], f'(x)>0.

Exercices de calculs de dérivées avec des exponentielles – Corrigés – 6/7



$$f(0) = \frac{25}{5 + 2 \times e^{-0.5 \times 0}} = \frac{25}{5 + 2 \times 1} = \frac{25}{7} \qquad f(15) = \frac{25}{5 + 2 \times e^{-0.5 \times 15}} = \frac{25}{5 + 2 \cdot e^{-7.5}}$$

Exercice 20:
$$f(x) = \exp\left(\frac{x^2}{x-1}\right)$$
 sur $]-\infty;1[$.

Il y a une valeur interdite : 1, car le dénominateur $x-1=0 \Leftrightarrow x=1$.

$$f(x)$$
 est de la forme $\exp(U(x))$ avec $U(x) = \frac{x^2}{x-1}$.

$$U(x)$$
 est de la forme $\frac{u(x)}{v(x)}$ avec $u(x)=x^2$, $u'(x)=2x$, $v(x)=x-1$ et $v'(x)=1$.

$$U'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{(v(x))^2} = \frac{2x(x-1) - 1 \times x^2}{(x-1)^2} = \frac{2x^2 - 2x - x^2}{(x-1)^2} = \frac{x^2 - 2x}{(x-1)^2}. \quad U'(x) = \frac{x(x-2)}{(x-1)^2}$$

Donc
$$f'(x) = U'(x) \times \exp(U(x))$$

$$f'(x) = \frac{x(x-2)}{(x-1)^2} \times \exp\left(\frac{x^2}{x-1}\right)$$

X	_∞		0			1
x		_	0	+		
x-2		_			_	
$(x-1)^2$		+			+	0
$\exp\left(\frac{x^2}{x-1}\right)$		+			+	
f'(x)		+	0		_	
variations de f			→ 1		•	

$$f(x) = \exp\left(\frac{0^2}{0-1}\right) = \exp(0) = 1$$