Calcul de dérivée avec le logarithme népérien.

Soit f la fonction définie par $f(x) = \ln\left(\frac{2x+3}{x+1}\right)$. On cherche une expression de f'(x).

1) Recherche de l'ensemble de définition de f. (Préalable indispensable pour savoir dans quel ensemble on travaille) f est définie si et seulement si $\frac{2x+3}{x+1} > 0$.

Recherche du zéro du numérateur : $2x+3=0 \Leftrightarrow 2x=-3 \Leftrightarrow x=-\frac{3}{2}$. Recherche de la valeur interdite du quotient : $x+1=0 \Leftrightarrow x=-1$.

Tableau de signes :

x	-∞		$-\frac{3}{2}$		-1		+∞
2x+3		_	0	+		+	
x+1		_		_	0	+	
$\frac{2x+3}{x+1}$		+	0	_		+	

$$S = \left| -\infty; -\frac{3}{2} \right| \cup]-1; +\infty[$$

f est définie sur $\left]-\infty; -\frac{3}{2}\right[\cup]-1; +\infty[$, et dérivable sur chacun des intervalles $\left]-\infty; -\frac{3}{2}\right[$ et $]-1; +\infty[$.

😃 Certaines fonctions ne sont pas définies et dérivables sur les mêmes intervalles, mais comme la fonction In est définie et dérivable sur \mathbb{R}^{+*} , c'est le cas ici.

2) Calcul de f'(x), sachant que x appartient soit à l'intervalle $]-\infty; -\frac{3}{2}[$, soit à l'intervalle $]-1; +\infty[$. $\underline{f(x) = \ln(u(x))} \text{ avec } u(x) = \frac{2x+3}{x+1}. \quad \text{Donc } f'(x) = \frac{u'(x)}{u(x)}.$

$$f(x)=\ln(u(x))$$
 avec $u(x)=\frac{2x+3}{x+1}$. Donc $f'(x)=\frac{u'(x)}{u(x)}$

$$u(x) = \frac{U(x)}{V(x)}$$
 avec $U(x) = 2x + 3$, $U'(x) = 2$, $V(x) = x + 1$, $V'(x) = 1$.

$$u(x) = \frac{U(x)}{V(x)} \text{ avec } U(x) = 2x + 3, \ U'(x) = 2, \ V(x) = x + 1, \ V'(x) = 1.$$

$$\text{Donc } u'(x) = \frac{U'(x)V(x) + V'(x)U(x)}{(V(x))^2} = \frac{2 \times (x+1) - 1 \times (2x+3)}{(x+1)^2} = \frac{2x + 2 - 2x - 3}{(x+1)^2} \quad u'(x) = \frac{-1}{(x+1)^2}.$$

Donc
$$f'(x) = \frac{u'(x)}{u(x)} = \frac{\frac{-1}{(x+1)^2}}{\frac{2x+3}{x+1}} = \frac{-1}{(x+1)^2} \times \frac{x+1}{2x+3}$$
 $f'(x) = \frac{-1}{(x+1)(2x+3)}$ en divisant le numérateur

et le dénominateur par (x+1) que l'on sait non nul puisque $x \neq -1$.

Pour le vérifier avec la TI-NSpire CAS, on tape : $\frac{d}{dx} \left(\ln \left(\frac{2x+3}{x+1} \right) \right)$