Terminale ES-L – Fiche bachotage sur le chapitre 5 « Les fonctions exponentielles »

Citer les 6 formules sur les puissances que nous connaissons depuis le collège, a et b étant des réels quelconques (non nuls s'ils apparaissent au dénominateur), et m et n étant des entiers relatifs quelconques.	$(a \times b)^n = a^n \times b^n$ $(a \times b)^n = a^n \times b^n$ $(distributivité de la puissance sur la multiplication et sur la division)$ La puissance ne se distribue pas sur l'addition ni sur la soustraction (penser aux identités remarquables comme contre-exemples) $(a^n \times a^m = a^{n+m})$
Dans quelles mesures ces formules sont-elles transposables à une puissance réelle et non plus entière ?	La puissance peut prendre n'importe quelle valeur réelle, mais le nombre élevé à cette puissance doit être strictement positif. Dans q^x , $q>0$ et $x \in \mathbb{R}$.
	Les formules deviennent, pour tous x et y réels, et pour tous p et q strictement positifs : $q^{-x} = \frac{1}{q^x} \qquad (p \times q)^x = p^x \times q^x \qquad \left(\frac{p}{q}\right)^x = \frac{p^x}{q^x}$ $q^x \times q^y = q^{x+y} \qquad \frac{q^x}{q^y} = q^{x-y} \qquad (q^x)^y = q^{xy}$
Que vaut a^0 pour tout réel a ?	1
Que vaut 2^{-3} ?	$\frac{1}{2^3} = \frac{1}{8}$ ou 0,125
Si $q > 0$ et $x \in \mathbb{R}$, quel est le signe de q^x ?	Strictement positif, même si $x < 0$. Exemple: $3^{-2} = \frac{1}{3^2} = \frac{1}{9} > 0$
Soit $n \in \mathbb{N}^*$. (Ensemble des entiers naturels non-nuls) Qu'appelle-t-on la <u>racine</u> n'ème d'un réel strictement positif q?	L' <u>unique</u> nombre <u>positif</u> a noté $q^{\frac{1}{n}}$ ou $\sqrt[n]{q}$ tel que $a^n = q$. (-3) a pour carré 9. Mais la racine carrée de 9, c'est 3, car 3>0.
Quelle est la fonction exponentielle de base 3 ?	La fonction f définie sur \mathbb{R} par $f(x)=3^x$
de base $\frac{1}{7}$?	La fonction f définie sur \mathbb{R} par $f(x) = \left(\frac{1}{7}\right)^x$
Quelle est l'allure de la courbe d'une fonction exponentielle de base q : • Lorsque q>1 ? • Lorsque q=1 ? • Lorsque 0 <q<1 ?<="" td=""><td>En rose: courbes de fonctions exponentielles de bases $q>1$ En vert: courbe de la fonction $x \mapsto 1^x$ ($q=1$) En bleu: courbes de fonctions exponentielles de bases $q \in \]0;1[$.</td></q<1>	En rose: courbes de fonctions exponentielles de bases $q>1$ En vert: courbe de la fonction $x \mapsto 1^x$ ($q=1$) En bleu: courbes de fonctions exponentielles de bases $q \in \]0;1[$.
Quel est le point commun à toutes ces courbes ?	Leur point commun est le point de coordonnées (0;1).

<u>Un rappel utile (qui vous servira dans d'autres leçons et divers problèmes)</u>:

Que signifie qu'une fonction est strictement croissante sur un intervalle ?	Qu'elle conserve l'ordre sur cet intervalle.
Comment traduire cette notion formellement ?	Si une fonction f est strictement croissante sur un intervalle I et si a et b appartiennent à I, alors : $a < b \Leftrightarrow f(a) < f(b)$
Application: si $q > 1$, dans quel ordre sont rangés q^7 et q^9 ?	Si $q > 1$, la fonction $x \mapsto q^x$ est strictement croissante sur \mathbb{R} (voir les courbes roses page précédente). Donc q^7 et q^9 sont rangés dans le même ordre que 7 et 9 : $7 < 9$ donc $q^7 < q^9$
Que signifie qu'une fonction est strictement décroissante sur un intervalle ?	Qu'elle inverse l'ordre sur cet intervalle.
Traduire formellement cette notion.	Si une fonction f est strictement décroissante sur un intervalle I et si a et b appartiennent à I, alors : $a < b \Leftrightarrow f(a) > f(b)$
Application : si $0 < q < 1$, dans quel ordre sont rangés q^3 et q^5 ?	Si $0 < q < 1$, la fonction $x \mapsto q^x$ est strictement décroissante sur \mathbb{R} (courbes bleues). Comme $3 < 5$, on a : $q^3 > q^5$
Qui est le plus grand, 3^{-2} ou 3^{-12} ?	$3>1$ donc la fonction $x \mapsto 3^x$ est str. croissante sur \mathbb{R} . 3^{-2} et 3^{-12} sont donc rangés dans le même ordre que -2 et -12 . $-2>-12$ donc $3^{-2}>3^{-12}$. Le plus grand est 3^{-2}
Qui est le plus grand, $\left(\frac{1}{3}\right)^{16}$ ou $\left(\frac{1}{3}\right)^{21}$?	$0 < \frac{1}{3} < 1$ donc la fonction $x \mapsto \left(\frac{1}{3}\right)^x$ est strictement décroissante sur $\mathbb{R} \left(\frac{1}{3}\right)^{16}$ et $\left(\frac{1}{3}\right)^{21}$ sont rangés dans l'ordre
	inverse de 16 et 21. Comme $16 < 21$, on a: $\left(\frac{1}{3}\right)^{16} > \left(\frac{1}{3}\right)^{21}$.
	C'est $\left(\frac{1}{3}\right)^{10}$ le plus grand.

La fonction exponentielle de base e

Comment nomme-t-on et note-on la fonction exponentielle de base e ? Quel est son ensemble de définition ? Quelles sont ses caractéristiques ? (dérivée, sens de variations ?) Quelle est l'allure de sa courbe représentative ?	 C'est la fonction exponentielle, notée exp, définie sur ℝ par exp(x)=e^x. (e ≈2,718) Elle est strictement croissante sur ℝ et égale à sa dérivée. exp(0)=exp '(0)=1 (la tangente à la courbe au point de coordonnées (0;1) a un coefficient directeur de 1)
•	La tangente au point d'abscisse 0 a pour coefficient directeur 1. A (0,1) 7
Dans quel intervalle se situe e^x lorsque x<0 ? et lorsque x>0 ?	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Quand est-ce que $e^x = e^y$?	Lorsque $x = y$, pour tous x et y réels.
Soit u une fonction définie et dérivable sur un intervalle I. Quelle est la dérivée de la fonction e^u , définie sur I par $x \mapsto e^{u(x)}$? Par exemple, que vaut $f'(x)$ si	$u' \times e^{u}$, définie sur I par $x \mapsto u'(x) \times e^{u(x)}$.
	$f'(x)=(2x-3)\times e^{x^2-3x+1}$