Terminales ES-L – Petits exercices d'échauffement au chapitre sur les suites

Exercice 1: La population d'un village est passée de 120 habitants le 1er janvier 2012 à 105 habitants le 1er janvier 2013. Calculer le pourcentage d'évolution du nombre d'habitants de ce village entre le 1er janvier 2012 et le 1er janvier 2013. Écrire la conclusion en langage usuel.

Exercice 2: Dans une cité universitaire, le montant du loyer mensuel pour une chambre est passé de 130 € l'an dernier à 140 € cette année. Calculer le pourcentage d'évolution du montant du loyer entre l'année dernière et cette année. Arrondir ce résultat à 0,1 % près, et écrire la conclusion en langage usuel.

Exercice 3: une fillette mesurait 94 cm il y a 6 mois. On la mesure aujourd'hui et on constate que sa taille a augmenté de 5 %. Combien mesure-t-elle aujourd'hui?

Exercice 4: Un lanceur vient d'expédier un javelot à 76,93 m, ce qui est inférieur de 2 % à son lancer précédent. À quelle distance avait-il alors lancé?

Exercice 5 : 1) une compagnie d'assurance baisse ses tarifs de 5 %. Calculer le montant de la prime que versera cette année un client qui payait 652 € l'année dernière.

2) Une compagnie concurrente baisse ses tarifs de 3,5 %. Calculer le montant de la prime que versait l'année passée un client qui paiera 405,30 € cette année.

Exercice 6: 1) La valeur d'une quantité a été multipliée par 1,6 et passe ainsi de V_0 à V_1 . Indiquer si cette évolution est une hausse ou une baisse, puis calculer le pourcentage d'évolution de V_0 à V_1 .

2) La valeur d'une quantité a été multipliée par 0.3 et passe ainsi de V_0 à V_1 . Indiquer si cette évolution est une hausse ou une baisse, puis calculer le pourcentage d'évoluton de V_0 à V_1

<u>Exercice 7</u>: Dans chacun des cas, indiquer si l'évolution est une hausse ou une baisse, puis déterminer le coefficient multiplicatif ou le pourcentage de cette évolution.

ou le pourcentage de cette evolution.		
hausse ou baisse?	Coefficient multiplicatif	Pourcentage d'évolution
	0,89	
	1,67	
		-13,1%
		0,8%
	10	
		225%

Exercice 8: On considère une suite arithmétique (w_n) de raison -8, telle que w_4 =15. Calculer w_5 et w_6 .

Exercice 9: on considère une suite arithmétique (v_n) de raison -3 telle que $v_9 = -2$. Calculer v_8 et v_7 .

Exercice 10: La suite (u_n) est arithmétique de terme initial $u_0 = -4$ et de raison 5. Calculer u_8 et u_{20} .

Exercice 11 : On considère la suite arithmétique (w_n) de terme

initial $w_0 = 10.5$ et de raison 0.35. Calculer w_{14} et w_{19} .

Exercice 12: on considère la suite arithmétique (v_n) de terme initial v_1 =8 et de raison -5. Calculer v_7 et v_{21} .

Exercice 13: Calculer la raison de la suite arithmétique (u_n) telle que $u_0 = -2$ et $u_{10} = 2$.

Exercice 14: Calculer la raison d'une suite arithmétique (w_n) telle que $w_1 = 100$ et $w_9 = 80$. Ensuite, calculer w_{30} .

Exercice 15: La population d'une ville, qui était de 15 000 habitants en 2001, baisse depuis cette date de 600 habitants par an.

- 1) Combien y avait-il d'habitants en 2002 ? En 2003 ?
- 2) On note p_0 la population en 2001 et p_n la population n années plus tard, c'est-à-dire en 2001+n. Montrer que la suite (p_n) est arithmétique. Préciser son terme initial et sa raison.
- 3) Si le même type d'évolution se maintient, quelle population peut-on prévoir pour cette ville en 2014 ?

Exercice 16: La suite (u_n) est telle que, pour tout entier naturel n, $u_{n+1}-u_n-1,5=0$. Montrer que la suite (u_n) est arithmétique et préciser sa raison.

Exercice 17: (t_n) est une suite arithmétique de raison 12 telle que t_{15} =-50. Calculer t_7 et t_{19} .

Exercice 18: On considère une suite géométrique (w_n) de raison 3 telle que $w_5=15$. Calculer w_6 et w_7 .

Exercice 19: On considère une suite géométrique (u_n) de raison 5 telle que u_{13} =50. Calculer u_{12} et u_{11} .

Exercice 20: (a_n) est une suite géométrique telle que a_9 =63 et a_7 =7. Calculer sa raison.

Exercice 21 : On considère la suite géométrique (w_n) de terme initial w_0 =10,5 et de raison 0,45. Calculer la valeur décimale arrondie à 0,01 près de w_4 et celle de w_6 .

Exercice 22 : On considère la suite géométrique (b_n) de terme initial b_1 =0,07 et de raison 10. Calculer b_4 et b_8 .

Exercice 23: On considère la suite géométrique (w_n) de raison 3, telle que $w_9 = 19683$. Calculer w_1 .

Exercice 24 : Monsieur Untel a acheté un lave-linge pour une valeur de 750 €. Il consulte son assureur. Celui-ci applique une réduction pour vétusté de 15 % par an. On obtient ainsi la valeur « remboursable » de l'année.

- 1) Quelle sera la valeur « remboursable » un an après l'achat ? 2 ans après ?
- 2) On pose v_0 =750 et on note v_n la valeur « remboursable » du lave-linge n années après l'achat. Montrer que la suite (v_n) est géométrique, préciser sa raison, son terme initial, et donner en fonction de n l'expression du terme général v_n .