Exercice 4 du bac blanc du 12 avril 2013 du Lycée Pierre Bourdan Pour les candidats n'ayant pas suivi l'enseignement de spécialité.

Énoncé:

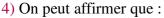
Cet exercice est un questionnaire à choix multiples. Pour chacune des 5 questions, trois réponses sont proposées ; une seule de ces réponses convient.

Indiquer sur la copie le numéro de la question et recopier la réponse exacte sans justifier le choix effectué.

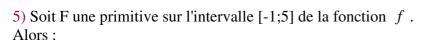
Barème : une réponse exacte rapporte 1 point. Une réponse inexacte enlève 0,25 point. L'absence de réponse n'apporte ni n'enlève aucun point.

- 1) L'ensemble des solutions dans \mathbb{R} de l'inéquation $e^{3x}-1 \ge 0$ est l'intervalle :
- $[0;+\infty[$ $[1;+\infty[$
- 2) Une primitive de la fonction f définie sur l'intervalle $]0;+\infty[$ par $f(x)=\ln(x)+1$ est :
 - $x / \rightarrow x \ln x + x$ $x / \rightarrow x \ln x$
- $x / \rightarrow \frac{1}{x}$
- 3) Le prix TTC (toutes taxes comprises) d'un article est 299 €. Sachant que le taux de TVA est de 19,6 %, son prix HT (hors taxe) est:
 - 240.40 €
- 250 €
- 279,40 €

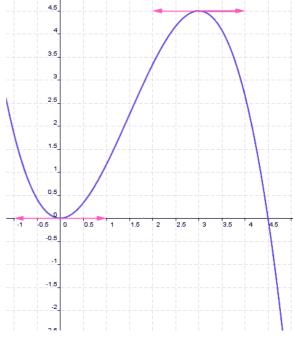
Dans cette partie, on considère la courbe représentative d'une fonction f définie et dérivable sur l'intervalle [-1;5] (voir cicontre). On note f' la dérivée de la fonction f.



- Réponse A : f'(4,5)=0
- Réponse B : f'(3) = 0
- Réponse C : f'(3) = 4.5



- Réponse B : F présente un minimum en x=0
- Réponse C : F présente un maximum en x=4,5.



Corrigé expliqué:

1) Remarque : on peut lire immédiatement la réponse en faisant tracer la courbe de la fonction $x \mapsto e^{3x}-1$ à la calculatrice!

Sinon, la méthode classique consiste à résoudre l'inéquation (I) $e^{3x}-1 \ge 0$.

(I)
$$\Leftrightarrow$$
 $e^{3x} \ge 1$ \Leftrightarrow $e^{3x} \ge e^0$ \Leftrightarrow $3x \ge 0$ \Leftrightarrow $x \ge 0$. $S=[0;+\infty[$

$$S = [0; +\infty[$$

(On rappelle que comme la fonction exponentielle est une fonction croissante sur \mathbb{R} , $a \ge b \iff e^a \ge e^b$)

\rightarrow La réponse correcte est $[0;+\infty[$.

- 2) Il suffit de dériver chacune des fonctions proposées. Déjà, on sait que $x \to \frac{1}{x}$ est la dérivée de la fonction logarithme népérien. On essaie donc plutôt les deux autres propositions.
 - Considérons la première proposition: soit F la fonction définie sur $]0;+\infty[$ par $F(x)=x\ln x+x$.

F(x) est de la forme $u(x) \times v(x) + x$, où u et v sont deux fonctions dérivables sur $]0; +\infty[$.

Sur
$$]0;+\infty[$$
, on a $\underline{u(x)=x}$, $\underline{u'(x)=1}$, $\underline{v(x)=\ln x}$ et $\underline{v'(x)=\frac{1}{x}}$.
Donc F est dérivable sur $]0;+\infty[$ et pour tout x de $]0;+\infty[$:

$$F'(x) = u'(x)v(x) + v'(x)u(x) + 1$$
, soit $F'(x) = 1 \times \ln x + \frac{1}{x} \times x + 1$, soit $F'(x) = \ln x + 2$.

 $F'(x) \neq \ln x + 1$, donc cette solution ne convient pas.

• Considérons la deuxième proposition: soit F la fonction définie sur $]0;+\infty[$ par $F(x)=x\ln x$. F(x) est de la forme $u(x) \times v(x)$, où u et v sont deux fonctions dérivables sur $]0;+\infty[$.

Sur
$$]0;+\infty[$$
, on a $u(x)=x$, $u'(x)=1$, $v(x)=\ln x$ et $v'(x)=\frac{1}{x}$.

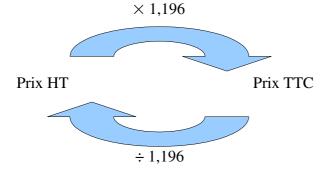
Donc F est dérivable sur $]0;+\infty[$ et pour tout x de $]0;+\infty[$: F'(x)=u'(x)v(x)+v'(x)u(x), soit $F'(x)=1\times \ln x + \frac{1}{x}\times x$, soit $F'(x)=\ln x + 1$.

\rightarrow La réponse correcte est donc $x \mapsto x \ln x$.

3) Entre le prix HT est augmenté de 19,6 % pour obtenir le prix TTC.

Pour augmenter un nombre de 19,6 %, on le multiplie par 1+19,6%=1+0,196=1,196

On a donc:



Comme le prix TTC est 299 € On obtient le prix HT en divisant 299 par 1,196.

$$299 \div 1,196 = 250$$

→ La réponse correcte est 250 €.

- 4) Par lecture graphique, on peut constater que la courbe représentative de f admet une tangente horizontale (donc de coefficient directeur 0) en son point d'abscisse 3. On a donc f'(3)=0.
- \rightarrow La réponse correcte est f'(3)=0
- 5) Le signe de f (à lire sur la courbe) nous renseigne sur les variations de F, puisque f est la dérivée de F:

X	-1		0		4,5		5	→ La réponse co
signe de $f(x)$		+	0	+	0	_		maximum en x=
Variations de F				\	F(4,5)		\	

correcte est « F admet un =4,5. »