# Terminale ES – L'essentiel sur les suites pour traiter les problèmes.

#### Sens de variations d'une suite :

Pour prouver qu'une suite  $(u_n)$  est <u>strictement croissante</u>, on prouve que :  $\underline{\forall n}$ ,  $u_{n+1} > u_n$  ou que  $\underline{\forall n}$ ,  $u_{n+1} - u_n > 0$ .

Pour prouver qu'une suite  $(u_n)$  est <u>strictement décroissante</u>, on prouve que :  $\underline{\forall n}$ ,  $u_{n+1} < u_n$  ou que  $\underline{\forall n}$ ,  $u_{n+1} - u_n < 0$ .

## Suites arithmétiques :

Pour prouver qu'une suite  $(u_n)$  est arithmétique, on prouve : Soit qu'il existe un réel r tel que  $\underline{\forall n}$ ,  $u_{n+1}=u_n+r$ Soit que  $\underline{\forall n}$ ,  $u_{n+1}-u_n$  est une constante r.

Bien évidemment, si r>0,  $(u_n)$  est strictement croissante, et si r<0,  $(u_n)$  est strictement décroissante.

Le <u>terme général</u> d'une suite arithmétique de terme initial  $u_0$  et de raison r est  $u_n = u_0 + n \times r$ .

Différence entre deux termes d'une suite arithmétique de raison  $\mathbf{r}: \boxed{u_m - u_p = (m-p) \times r}$ 

## Suites géométriques:

Pour prouver qu'une suite  $(u_n)$  est géométrique, on prouve : Soit qu'il existe un réel q tel que  $\underline{\forall} \ \underline{n}, \ u_{n+1} = q \times u_n$ . Soit que le terme général de la suite est de la forme  $b \times a^n \underline{\forall} \ \underline{n}$ .

Le <u>terme général</u> d'une suite géométrique de terme initial  $u_0$  et de raison q est :  $u_n = u_0 \times q^n$ .

Sens de variation et convergence des suites géométriques à termes positifs :

Soit  $(u_n)$  une suite géométrique de premier terme strictement positif et de raison q>0 :

- Si 0 < q < 1,  $(u_n)$  est <u>strictement décroissante</u> et <u>converge vers 0</u>.
- Si q=1,  $(u_n)$  est constante (elle converge alors vers cette constante).
  - Si q > 1,  $(u_n)$  est strictement croissante et diverge vers  $+\infty$

Somme des n+1 premières puissances de q:

Soit 
$$\underline{q \neq 1}$$
. Alors  $1 + q + q^2 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$ 

<sup>1</sup> Si le terme initial est  $u_1$ ,  $u_n = u_1 + (n-1)r$ .

<sup>2</sup> Si le terme initial est  $u_1$ ,  $u_n = u_1 \times q^{n-1}$ 

#### Opérations sur les limites :

• Si 
$$\lim_{n \to +\infty} q^n = +\infty$$
, alors si  $a > 0$ ,  $\lim_{n \to +\infty} a \times q^n = +\infty$  et si  $a < 0$ ,  $\lim_{n \to +\infty} a \times q^n = -\infty$   
• Si  $\lim_{n \to +\infty} q^n = L$  ( $L \in \mathbb{R}$ ), alors  $\lim_{n \to +\infty} a \times q^n = a \times L$ .

Et si vous cherchez la limite de  $b+a\times q^n$ , il vous suffit d'ajouter b au résultat trouvé pour  $\lim_{n\to +\infty} a\times q^n$ , sachant que si on ajoute un réel à  $+\infty$  ou  $-\infty$ , ça reste  $+\infty$  ou  $-\infty$ .

### Exemples:

- 1) On veut connaître la limite de la suite  $(u_n)$  telle que  $\forall$  n,  $u_n = 10 3 \times 0.8^n$ .  $\lim_{n \to +\infty} 0.8^n = 0 \text{ car } 0 < 0.8 < 1 \text{ , donc } \lim_{n \to +\infty} -3 \times 0.8^n = -3 \times 0 = 0 \text{ donc } \lim_{n \to +\infty} 10 - 3 \times 0.8^n = 10 + 0 = 10 \text{ .}$
- 2) On veut connaître la limite de la suite  $(v_n)$  telle que  $\forall$  n,  $v_n = 15 3 \times 2^n$ :  $\lim_{n \to +\infty} 2^n = +\infty \text{ car } 2 > 1 \text{ , donc } \lim_{n \to +\infty} -3 \times 2^n = -\infty \text{ , donc } \lim_{n \to +\infty} 15 3 \times 2^n = -\infty \text{ . (Même si on ajoute 15 à } -\infty \text{, ça reste } -\infty)$

<u>Exercice 1</u> (Exercice-type avec des valeurs simples, pour comprendre comment on se ramène à une suite géométrique pour étudier une suite arithmético-géométrique) :

- $(u_n)$  est la suite définie sur  $\mathbb{N}$  par  $u_0 = 1$  et  $\forall n \in \mathbb{N}, [u_{n+1} = 2u_n 3]$ .
- 1) Calculer  $u_1$ ,  $u_2$ ,  $u_3$  et  $u_4$ .
- 2) On pose, pour tout  $n \in \mathbb{N}$ ,  $v_n = u_n 3$ .
  - a) Montrer que  $(v_n)$  est une suite géométrique de raison 2. <sup>4</sup>
  - b) Exprimer  $v_n$  en fonction de n. <sup>5</sup>
- 3) Exprimer  $u_n$  en fonction de n. 6
- 4) Déterminer la limite de la suite  $(u_n)$ .

Exercice 2 : (Problème de bac-type, avec une évolution en pourcentage et un ajout constant pour former une suite arithmético-géométrique)

Dans un village, l'association de gymnastique comptait 50 adhérents en 2006.

Depuis cette date, la trésorière a remarqué que, chaque année, elle reçoit 18 nouvelles adhésions et que 15% des anciens inscrits ne se réinscrivent pas, tandis que les autres renouvellent leur adhésion.

On note  $u_n$  le nombre d'adhérents pour l'année 2006+n.

- 1) Que vaut  $u_0$  et que vaut, pour tout entier n,  $u_{n+1}$  en fonction de  $u_n$ ?
- 2) On pose pour tout entier n,  $v_n = u_n 120$ . a) Montrer que  $(v_n)$  est géométrique, préciser sa raison et son terme initial. b) Montrer que pour tout entier n,  $u_n = 120 70 \times 0.85^n$  c) Étudier le sens de variations de la suite  $(u_n)$ . d) Montrer que pour  $n \ge 20$ ,  $117 \le u_n < 120$  et interpréter ce résultat.

Et la représentation graphique ? Certains problèmes nous demandent de faire une représentation graphique d'une suite pour conjecturer sa limite.

<sup>3</sup> C'est une suite arithmético-géométrique car elle est définie par une relation de récurrence du type :  $u_{n+1} = au_n + b \ \forall n$ . Remarque : la suite géométrique associée aura pour raison a.

<sup>4</sup> La procédure est toujours la même : 1- On exprime  $v_{n+1}$  en fonction de  $u_{n+1}$  . 2- On remplace  $u_{n+1}$  par sa valeur en fonction de  $u_n$  3- On factorise l'expression obtenue par la raison (ici : 2) 4- On obtient  $v_{n+1} = v_n \times raison$  en remplaçant, ici,  $u_n - 3$  par  $v_n$ .

<sup>5</sup> Utiliser la formule du terme général d'une suite géométrique.

<sup>6</sup> Remarquer que si, pour tout n,  $v_n = u_n - 3$ , alors, pour tout n,  $u_n = v_n + 3$ .

<sup>7</sup> Procéder comme dans les exemples ci-dessus.

<sup>8</sup> On obtient une relation du type  $u_{n+1} = a \times u_n + b$ . La raison de la suite géométrique associée sera a, qui est le coefficient multiplicatif de l'évolution en pourcentage : (1+t%) pour une augmentation de t%, (1-t%) pour une diminution de t%.

Il s'agit de suites arithmético-géométriques définies par une relation de récurrence du type :  $\forall$  n,  $u_{n+1} = au_n + b$ . On nous donne aussi son terme initial.

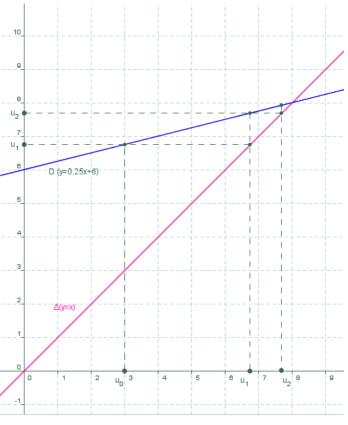


- La droite d'équation y=ax+b (notons-la D)
- La droite d'équation y=x (notons-la  $\Delta$ )

On nous demande de représenter les premiers termes de la suite : on place  $u_0$  sur l'axe des abscisses. Le point de D d'abscisse  $u_0$  aura pour ordonnée  $u_1$ . Pour placer  $u_1$  en abscisse, on utilise la droite  $\Delta$ . Puis on trouve  $u_2$  en ordonnées à l'aide de la droite D, et on continue de la même manière.

La limite à trouver est l'abscisse du point d'intersection des deux droites !

Exemple ci-contre avec  $u_0=3$ , a=0.25 et b=6.



L'énoncé du problème associé à ce graphique pourrait être :

Exercice 3:  $(u_n)$  est la suite définie sur  $\mathbb{N}$  par  $u_0=3$  et, pour tout entier naturel n,  $u_{n+1}=\frac{1}{4}u_n+6$ .

# Partie A : Étude graphique.

- 1) Dans un repère orthonormé (d'unité 1 ou 2 cm au choix), tracer les droites D d'équation  $y = \frac{1}{4}x + 6$  et  $\Delta$  d'équation y = x.
- 2) Représenter dans ce repère les nombres  $u_0$ ,  $u_1$ ,  $u_2$  et  $u_3$ .
- 3) Conjecturer le sens de variations et la limite de la suite  $(u_n)$ .

#### Partie B: Étude calculatoire.

- 1) Calculer  $u_1$ ,  $u_2$  et  $u_3$ . Les valeurs calculées semblent-elles coïncider avec les nombres construits partie A?
- 2) Pour tout entier naturel n, on pose  $v_n = u_n 8$ .
  - a) Prouver que  $(v_n)$  est une suite géométrique dont on précisera la raison et le premier terme.
  - b) Exprimer, pour tout n,  $v_n$  en fonction de n.
  - c) Exprimer, pour tout n,  $u_n$  en fonction de n.
- d) Quelles sont les limites des suites  $(v_n)$  et  $(u_n)$ ? La limite de  $(u_n)$  trouvée dans la partie B coïncide-t-elle avec celle que vous avez conjecturée dans la partie A?
- 3) Étudier le sens de variations de la suite  $(u_n)$ . Correspond-il à la conjecture de la partie A?



# Corrigés des exercices:

Exercice 1  $(u_n)$  est la suite définie sur  $\mathbb{N}$  par  $u_0 = 1$  et  $\forall n \in \mathbb{N}, \boxed{u_{n+1} = 2u_n - 3}$ .

1) 
$$u_1 = 2u_0 - 3 = 2 \times 1 - 3 = -1$$
  $u_2 = 2u_1 - 3 = 2 \times (-1) - 3 = -2 - 3 = -5$   $u_3 = 2u_2 - 3 = 2 \times (-5) - 3 = -10 - 3 = -13$   $u_4 = 2u_3 - 3 = 2 \times (-13) - 3 = -26 - 3 = -29$ 

- 2) On pose, pour tout  $n \in \mathbb{N}$ ,  $v_n = u_n 3$ .
- a) On va essayer de montrer qu'il existe un réel q tel que, pour tout n,  $v_{n+1} = q \times v_n$ . On s'attend à ce que ce réel q soit 2, car dans la relation de récurrence qui relie  $u_{n+1}$  à  $u_n$ , de la forme  $u_{n+1} = au_n + b$ , on a a = 2.
  - On écrit  $v_{n+1}$  en fonction de  $u_{n+1}$ : Pour tout n,  $v_{n+1} = u_{n+1} 3$ .
  - On remplace  $u_{n+1}$  par sa formule en fonction de  $u_n$ : Pour tout n,  $v_{n+1} = (2u_n 3) 3 = 2u_n 6$ .
  - On factorise par 2 : Pour tout n,  $v_{n+1} = 2 \times u_n 2 \times 3 = 2(u_n 3)$
  - On remplace  $u_n 3$  par  $v_n$ : Pour tout n,  $v_{n+1} = 2v_n$ .

On vient de prouver que  $(v_n)$  est une suite géométrique de raison 2.

On calcule son terme initial:  $v_0 = u_0 - 3 = 1 - 3 = -2$ .

b) Pour exprimer  $v_n$  en fonction de n, on utilise la formule du terme général d'une suite géométrique :

On sait que si  $(v_n)$  est une suite géométrique de terme initial  $v_0$  et de raison q, on a, pour tout  $v_n = v_0 \times q^n$ .

Ici, avec  $v_0 = -2$  et q = 2, on a, pour tout entier n,  $v_n = -2 \times 2^n$ .

3) Pour exprimer  $u_n$  en fonction de n, on utilise la relation qui relie  $u_n$  et  $v_n$  pour tout n:

Pour tout entier n, on a:  $v_n = u_n - 3 \Leftrightarrow v_n + 3 = u_n$ .

Donc pour tout entier n, on a  $u_n = v_n + 3$ , soit  $u_n = -2 \times 2^n + 3$ , en utilisant la formule de  $v_n$  en fonction de n.

4) On vient de prouver que, pour tout  $n \in \mathbb{N}$ ,  $u_n = -2 \times 2^n + 3$ .

Comme 2 > 1,  $\lim_{n \to +\infty} 2^n = +\infty$ . Comme -2 < 0,  $\lim_{n \to +\infty} -2 \times 2^n = -\infty$ .

Et comme « on ne change pas l'infini si on lui ajoute 3 » :  $\lim_{n \to +\infty} -2 \times 2^n + 3 = -\infty$ .

 $\underline{\text{Conclusion}}: \lim_{n \to +\infty} u_n = -\infty.$ 

Exercice 2: 1)  $u_0 = 50$  car l'association compte 50 adhérents en 2006.

Pour tout n,  $u_{n+1}=0.85u_n+18$ . Le 18 correspond au nombre de nouvelles adhésions chaque année. Le 0,85 aux 85 % d'anciens adhérents qui renouvellent leur abonnement.

- 2) On pose pour tout entier n,  $v_n = u_n 120$ .
- a) On réitère le même cheminement que dans l'exercice précédent :
  - On exprime  $v_{n+1}$  en fonction de  $u_{n+1}$ : Pour tout entier n,  $v_{n+1} = u_{n+1} 120$ .
  - On remplace  $u_{n+1}$  par sa formule en fonction de  $u_n$ :  $v_{n+1} = 0.85 u_n + 18 120 = 0.85 u_n 102$

- On factorise par le coefficient de  $u_n$ : Pour tout n,  $v_{n+1} = 0.85 \times u_n 0.85 \times 120 = 0.85 (u_n 120)$
- On remplace  $u_n 120$  par  $v_n$ : Pour tout entier n,  $v_{n+1} = 0.85 v_n$ .

Donc  $(v_n)$  est une suite géométrique de raison 0,85.

Son terme initial est  $v_0 = u_0 - 120 = 50 - 120 = -70$ .

b) Comme  $(v_n)$  est une suite géométrique de terme initial -70 et de raison 0.85, pour tout entier n, on a  $v_n = -70 \times 0.85^n$ .

Comme pour tout entier n, on a  $v_n = u_n - 120 \Leftrightarrow v_n + 120 = u_n \Leftrightarrow u_n = v_n + 120$ . Donc pour tout entier n,  $u_n = -70 \times 0.85^n + 120$  ou encore  $u_n = 120 - 70 \times 0.85^n$ .

c) Pour tout n, 
$$u_{n+1} - u_n = (120 - 70 \times 0.85^{n+1}) - (120 - 70 \times 0.85^n)$$
  
 $u_{n+1} - u_n = 120 - 70 \times 0.85^{n+1} - 120 + 70 \times 0.85^n$   
 $u_{n+1} - u_n = -70 \times 0.85^{n+1} + 70 \times 0.85^n$   
 $u_{n+1} - u_n = 70 \times 0.85^n - 70 \times 0.85^{n+1}$   
 $u_{n+1} - u_n = 70 \times 0.85^n \times 1 - 70 \times 0.85^n \times 0.85$  (car  $0.85^{n+1} = 0.85^n \times 0.85^1$ )  
 $u_{n+1} - u_n = 70 \times 0.85^n \times (1 - 0.85)$   
 $u_{n+1} - u_n = 70 \times 0.85^n \times 0.15$ 

La différence  $u_{n+1}-u_n$  est le produit de trois nombres strictement positifs. Donc, d'après la règle des signes, il est strictement positif.

Donc pour tout entier n,  $u_{n+1} - u_n > 0 \Leftrightarrow u_{n+1} > u_n$  donc la suite  $(u_n)$  est strictement croissante.

d) Il est facile de montrer que pour tout entier n,  $u_n < 120$ 

En effet : Pour tout entier n,  $u_n = 120 - 70 \times 0.85^n$ .

 $70\times0,85^n>0$  donc  $-70\times0,85^n<0$ , donc, en additionnant 120 aux deux membres de cette inégalité :  $120-70\times0,85^n<120$ , soit  $u_n<120$ .

Maintenant, pour montrer que si  $n \ge 20$ ,  $u_n \le 117$ , on utilise le fait que la suite  $(u_n)$  est strictement croissante. On calcule  $u_{20} = 120 - 70 \times 0.85^{20} \approx 117.3$ , donc  $u_{20} > 117$ , et, comme la suite  $(u_n)$  est strictement croissante, pour tout  $n \ge 20$ , on aura  $u_n \ge u_{20} > 117$  donc  $u_{20} > 117$ .

On a bien, pour tout  $n \ge 20$ ,  $117 \le u_n < 120$ , et même  $117 < u_n < 120$ .

<u>Interprétation</u>: 2006+20=2026. Si ce type d'évolution se confirme sur 20 ans, en 2026 et au-delà, l'association comptera plus de 117 adhérents, mais ne dépassera jamais 120 adhérents.

Exercice 3:  $(u_n)$  est la suite définie sur  $\mathbb{N}$  par  $u_0=3$  et, pour tout entier naturel n,  $u_{n+1}=\frac{1}{4}u_n+6$ .

Partie A : Étude graphique.

- 1) et 2) Voir le graphique page 3.
- 3) Il semble que la suite  $(u_n)$  soit croissante, car sur l'axe des abscisses,  $u_0$ ,  $u_1$ ,  $u_2$  ... apparaissent dans cet ordre. Le point d'intersection de D et de  $\Delta$  a pour coordonnées (8;8). Les points de D d'abscisses  $u_n$  semblent s'accumuler vers ce point d'intersection. On conjecture donc que  $\lim_{n \to \infty} u_n = 8$ .

1) 
$$u_1 = \frac{1}{4}u_0 + 6 = \frac{1}{4} \times 3 + 6 = \frac{3}{4} + \frac{24}{4} = \frac{27}{4}$$
  $u_1 = 6,75$   
 $u_2 = \frac{1}{4}u_1 + 6 = \frac{1}{4} \times \frac{27}{4} + 6 = \frac{27}{16} + \frac{96}{16} = \frac{123}{16}$   $u_2 \approx 7,69$   
 $u_3 = \frac{1}{4}u_2 + 6 = \frac{1}{4} \times \frac{123}{16} + 6 = \frac{123}{64} + \frac{384}{64} = \frac{507}{64}$   $u_3 \approx 7,92$ 

Oui, ces valeurs semblent correspondre aux nombres construits sur le graphique.

- 2) Pour tout entier naturel n, on pose  $v_n = u_n 8$ .
- a) On procède comme dans les deux exercices précédents :
  - On exprime  $v_{n+1}$  en fonction de  $u_{n+1}: \forall n \in \mathbb{N}, v_{n+1}=u_{n+1}-8$ .
  - On remplace  $u_{n+1}$  par sa formule en fonction de  $u_n: \forall n \in \mathbb{N}, \ v_{n+1} = \left(\frac{1}{4}u_n + 6\right) 8 = \frac{1}{4}u_n 2$ .
  - On factorise par le coefficient de  $u_n: \forall n \in \mathbb{N}, \ v_{n+1} = \frac{1}{4} \times u_n \frac{1}{4} \times 8 = \frac{1}{4} (u_n 8)$
  - On remplace  $u_n 8$  par  $v_n : \forall n \in \mathbb{N}, v_{n+1} = \frac{1}{4}v_n$ .

Ceci prouve que  $(v_n)$  est une suite géométrique de raison  $\frac{1}{4}$ . Son terme initial est  $v_0 = u_0 - 8 = 3 - 8 = -5$ .

b) Comme  $(v_n)$  est une suite géométrique de terme initial -5 et de raison  $\frac{1}{4}$ ,

pour tout entier 
$$n$$
, on a  $v_n = v_0 \times raison^n$ , soit  $v_n = -5 \times \left(\frac{1}{4}\right)^n$ , ou  $v_n = -5 \times 0.25^n$ .

- c) Pour tout entier n,  $v_n = u_n 8$  donc  $u_n = v_n + 8$ , donc  $u_n = -5 \times 0.25^n + 8$
- d)  $\lim_{n \to +\infty} 0.25^n = 0$  car 0 < 0.25 < 1. Donc  $\lim_{n \to +\infty} -5 \times 0.25^n = -5 \times 0 = 0$ , soit  $\lim_{n \to +\infty} v_n = 0$ . Comme, pour tout  $n \in \mathbb{N}$ ,  $u_n = v_n + 8$  et comme  $\lim_{n \to +\infty} v_n = 0$ ,  $\lim_{n \to +\infty} u_n = 0 + 8 = 8$ .

Ce résultat coïncide bien avec la conjecture de la partie A.

3) Étudions, pour tout entier n, le signe de  $u_{n+1}-u_n$ .

Pour tout entier naturel 
$$n$$
,  $u_{n+1} - u_n = (-5 \times 0.25^{n+1} + 8) - (-5 \times 0.25^n + 8)$   $u_{n+1} - u_n = -5 \times 0.25^{n+1} + 8 + 5 \times 0.25^n - 8$   $u_{n+1} - u_n = -5 \times 0.25^{n+1} + 5 \times 0.25^n$   $u_{n+1} - u_n = 5 \times 0.25^n - 5 \times 0.25^{n+1}$   $u_{n+1} - u_n = 5 \times 0.25^n \times 1 - 5 \times 0.25^n \times 0.25$  car  $0.25^{n+1} = 0.25^n \times 0.25^n$   $u_{n+1} - u_n = 5 \times 0.25^n (1 - 0.25)$   $u_{n+1} - u_n = 5 \times 0.25 \times 0.75$ .

La différence  $u_{n+1}-u_n$  est le produit de trois nombres positifs. D'après la règle des signes,  $u_{n+1}-u_n>0$  pour tout entier n, donc  $\forall n \in \mathbb{N}, u_{n+1}>u_n$ . La suite  $(u_n)$  est donc bien strictement croissante, ce que nous avions conjecturé dans la partie A.