2^{nde} – Activité d'introduction aux tableaux de signes

Partie 1: Résolution d'équations ax + b = 0.

Résoudre dans \mathbb{R} les équations d'inconnue $x: [(E_1) \ 4x + 3 = 0]$

$$(E_2) - 5x + 2 = 0$$
 (E_3) $7x - 1 = 0$ $(E_4) - 3x - 5 = 0$

 (E_5) ax + b = 0 dans le cas où a \neq 0. ax + b s'annule pour x =

Partie 2 : Résolution d'inéquations ax + b ... 0.

Résoudre dans \mathbb{R} les inéquations d'inconnue x:

$$\boxed{ (I_{1-1}) \ 4x + 3 > 0 } \ \boxed{ (I_{1-2}) \ 4x + 3 \ge 0 } \ \boxed{ (I_{1-3}) \ 4x + 3 < 0 } \ \boxed{ (I_{1-4}) \ 4x + 3 \le 0 }$$

$$\boxed{(I_{2-1}) - 5x + 2 > 0} \boxed{(I_{2-1}) - 5x + 2 \ge 0} \boxed{(I_{2-3}) - 5x + 2 < 0} \boxed{(I_{2-4}) - 5x + 2 \le 0}$$

$$\boxed{ (I_{3-1}) \ 7x - 1 > 0 } \ \boxed{ (I_{3-2}) \ 7x - 1 \ge 0 } \ \boxed{ (I_{3-3}) \ 7x - 1 < 0 } \ \boxed{ (I_{3-4}) \ 7x - 1 \le 0 }$$

$$\boxed{(I_{4-1}) - 3x - 5 > 0} \boxed{(I_{4-2}) - 3x - 5 \ge 0} \boxed{(I_{4-1}) - 3x - 5 < 0} \boxed{(I_{4-1}) - 3x - 5 < 0} \boxed{(I_{4-1}) - 3x - 5 \le 0}$$

Dans le cas où a > 0: (indiquez les opérations appliquées aux deux membres de l'inéquation)

$$(I_{5-1})$$
 ax + b > 0 (I_{5-2}) ax + b \geq 0 (I_{5-3}) ax + b \leq 0 (I_{5-4}) ax + b \leq 0

Dans le cas où a < 0: (même consigne)

$$\lfloor (I_{6-1}) \ ax + b > 0 \rfloor \ \lfloor (I_{6-2}) \ ax + b \ge 0 \rfloor \ \lfloor (I_{6-3}) \ ax + b < 0 \rfloor \ \lfloor (I_{6-4}) \ ax + b \le 0 \rfloor$$

Qu'est-ce qui change entre le cas a > 0 et le cas a < 0?

Partie 3 : Principe du tableau de signes.

D'après l'équation (E_1) et les inéquations (I_{1-1}) et (I_{1-3}) :

Pour quelle valeur de x a-t-on 4x + 3 = 0? (la placer en rouge sur une droite graduée)

Sur quel intervalle 4x + 3 est-il strictement positif ? (colorier cet intervalle en vert)

Sur quel intervalle 4x + 3 est-il strictement négatif ? (colorier cet intervalle en bleu)

On reporte les résultats trouvés dans un tableau de signes :

On tope	orte les resultat	b trouves duris un tuoreu	a de bignes .	
X	- ∞	$-\frac{3}{4}$		+∞
4x + 3		- 0	+	

Etablir de même les tableaux de signes de : -5x + 2; 7x - 1 et -3x - 5

Compléter le tableau de signe de ax + b dans le cas a > 0:

X	-∞	+ 8
ax + b	0	

Compléter le tableau de signe de ax + b dans le cas a < 0:

X	-∞	+∞
ax + b	0	

Ces deux tableaux sont à savoir par cœur.

Retenir :
$$ax + b$$
 est du signe de a après $-\frac{b}{a}$

Partie 4: Recherche du signe d'un produit.

- On cherche à établir le signe du produit (-5x + 2)(7x 1)
- -5x + 2 s'annule en et 7x 1 s'annule en

Le plus petit des deux est, que l'on place en premier dans le tableau.

On partage
$$\mathbb{R}$$
 en 3 intervalles : $]-\infty; \frac{1}{7}[;]\frac{1}{7}; \frac{2}{5}[$ et $]\frac{2}{5}; +\infty[$

Etablir sur chacun de ces intervalles, el signe de -5x + 2, celui de 7x - 1, puis, grâce à la règle des signes, le signe du produit (-5x + 2)(7x - 1)

Compléter le tableau :

X	- ∞	$\frac{1}{7}$	$\frac{2}{5}$	+∞
-5x+2	• • • • • • •		0	•••••
7x - 1	• • • • • • • • • • • • • • • • • • • •	0	• • • • • • • • • • • • • • • • • • • •	•••••
$(-5x+2) \times (7x-1)$	•••••	0	0	•••••

Utiliser ce tableau pour résoudre les inéquations-produits :

$$(I_{7-1}) (-5x+2) (7x-1) > 0$$

$$(I_{7-2}) (-5x+2) (7x-1) \leq 0$$

$$(I_{7-2}) (-5x+2) (7x-1) \leq 0$$

$$(I_{7-4}) (-5x+2) (7x-1) \leq 0$$

<u>Partie 5</u>: Méthode pour résoudre une inéquation-produit.

Un énoncé vous demande de résoudre l'inéquation (I_8): $(7x - 3)(-2x + 6) \le 0$

- Chercher les valeurs de x qui annulent 7x 3 et -2x + 6 et les classer par ordre croissant.
- Etablir le tableau de signes de (7x 3)(-2x + 6)

X	- ∞		••••	+∞
• • • • • • • •				
• • • • • • •				
$(7x-3) \times (-2x+6)$	•••••	0	0	•••••

• Donner l'ensemble des solutions de l'inéquation par lecture du tableau.

Procéder de même pour résoudre (-3x+2)(x-5)(-x+8) < 0