Questionnaire de révisions de géométrie plane (connaissances de collège)

Code couleur des figures : en bleu les hypothèses, en vert les conclusions

Citer <u>le théorème de Pythagore</u> .	Si un triangle ABC est rectangle en A, alors $BC^2 = AB^2 + AC^2$	$C = AB^{2} + AC^{2}$
Citer <u>la réciproque du théorème de</u> <u>Pythagore</u> .	Si, dans un triangle ABC, on a $BC^{2} = AB^{2} + AC^{2},$ alors le triangle ABC est rectangle en A.	$A \qquad BC^2 = AB^2 + AC^2$
Citer <u>le théorème de Thalès</u>	Si: A, M, B sont alignés A, N, C sont alignés (MN)//(BC) Alors $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$	$ \frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC} $ N C
Citer <u>la réciproque du théorème de Thalès</u> (même conseil)	Si A, M, B d'une part et A, N, C d'autre part sont alignés dans le même ordre, et si $\frac{AM}{AB} = \frac{AN}{AC}$, alors (MN)//(BC).	$\frac{AM}{AB} = \frac{AN}{AC}$ M N C
Qu'est-ce que la <u>bissectrice</u> d'un angle ?	Une droite qui partage cet angle en deux angles égaux.	A
Quel est le point de concours des bissectrices des angles d'un triangle ?	Le <u>centre du cercle inscrit</u> dans ce triangle (qui est tangent à ses trois côtés)	B C
Qu'est-ce que la <u>médiatrice</u> d'un segment ?	Une droite qui est perpendiculaire à un segment et le coupe en son milieu. C'est aussi l'ensemble des points équidistants des deux extrémités du segment.	A B'
Quel est le point de concours des médiatrices des côtés d'un triangle ?	Le <u>centre de son cercle circonscrit</u> (qui passe par les 3 sommets)	A' H C

Que sont les <u>médianes</u> d'un triangle ?	Les droites passant par un sommet et le milieu du côté opposé.	A M
Comment nomme-t-on le point de concours des médianes d'un triangle ?	Le <u>centre de gravité</u> du triangle.	B B'
Que sont les <u>hauteurs</u> dans un triangle ?	Les droites passant par un sommet et perpendiculaires au côté opposé.	A
Comment nomme-t-on le point de concours des hauteurs d'un triangle ?	L'orthocentre du triangle. (En grec, « orthos » signifie « droit » : penser aux angles droits formés par les hauteurs)	В
Dans quels cas les droites particulières d'un triangle se confondent-elles ?	Si le triangle est isocèle, les 4 droites particulières (médiane, médiatrice, hauteur, bissectrice) relatives au sommet principal se confondent.	
	Dans le cas d'un triangle équilatéral, le médiatrices, les trois hauteurs et les tro	
Citer les trois théorèmes des milieux.	1- La droite qui passe par les milieux de deux côtés d'un triangle est parallèle au côté opposé.	A (IJ)//(BC) J J= \frac{1}{2}BC
	2- La longueur du segment qui relie les milieux de deux côtés d'un triangle vaut la moitié de la longueur du troisième côté.	В
	3- Si, dans un triangle, une droite passe par le milieu d'un côté et si elle est parallèle à un second côté,	A
	alors, elle coupe le troisième côté en son milieu.	В
Citer les deux théorèmes, réciproques l'un de l'autre, qui concernent un triangle rectangle et le centre de son cercle circonscrit.	Si un triangle est rectangle, alors le milieu de son hypoténuse est le centre de son cercle circonscrit.	A
	Réciproquement, si le milieu d'un côté d'un triangle est le centre de son cercle circonscrit, alors ce triangle est rectangle.	В
	Autre formulation : Si [BC] est le diamètre d'un cercle et A un point du cercle différent de B et de C, alors le triangle ABC est rectangle en A.	B
	ou encore : Si ABC est un triangle et I un point de [BC] que IA=IB=IC, alors ABC est rectangle en A.	